To convert a PyTorch model (with a .pth
file) to a format supported by iOS, you need to convert it to Core ML format (.mlmodel
). Here's a step-by-step guide to accomplish this:
1. Install the Required Libraries
You need to install torch
, coremltools
, and onnx
if you haven't already:
pip install torch coremltools onnx
2. Convert PyTorch Model to ONNX
First, convert the PyTorch model to ONNX format:
import torch
import torchvision.models as models
# Load your PyTorch model
model = models.resnet18(pretrained=True)
model.eval()
# Dummy input for the model
dummy_input = torch.randn(1, 3, 224, 224)
# Export the model to ONNX
torch.onnx.export(model, dummy_input, "model.onnx", opset_version=11)
3. Convert ONNX Model to Core ML
Use coremltools
to convert the ONNX model to Core ML format:
import coremltools as ct
# Load the ONNX model
onnx_model_path = "model.onnx"
onnx_model = ct.converters.onnx.convert(model=onnx_model_path)
# Save the Core ML model
onnx_model.save("model.mlmodel")
4. Integrate Core ML Model into iOS Application
You can now integrate the generated .mlmodel
file into your iOS application. Here's a brief overview:
- Add the Model to Your Xcode Project: Drag and drop the
.mlmodel
file into your Xcode project. - Create a Swift Class for the Model: Xcode will automatically generate a Swift class for the model.
- Use the Model in Your Code:
import CoreML
import Vision
import UIKit
func predict(image: UIImage) -> [VNClassificationObservation]? {
guard let model = try? VNCoreMLModel(for: Model().model) else { return nil }
let request = VNCoreMLRequest(model: model) { (request, error) in
guard let results = request.results as? [VNClassificationObservation] else { return }
// Process results
}
guard let ciImage = CIImage(image: image) else { return nil }
let handler = VNImageRequestHandler(ciImage: ciImage, options: [:])
try? handler.perform([request])
return request.results as? [VNClassificationObservation]
}
// Usage
if let image = UIImage(named: "example.jpg") {
if let results = predict(image: image) {
for result in results {
print("\(result.identifier): \(result.confidence)")
}
}
}
Additional Considerations
- Model Optimization: Consider optimizing the model for better performance on mobile devices using techniques like quantization.
- Validation: After conversion, validate the model to ensure its accuracy and performance are as expected.